Multiresolution Surfaces having Arbitrary Topologies by a Reverse Doo Subdivision Method

نویسندگان

  • Faramarz F. Samavati
  • Nezam Mahdavi-Amiri
  • Richard H. Bartels
چکیده

We have shown how to construct multiresolution structures for reversing subdivision rules using global least squares models 16. As a result, semiorthogonal wavelet systems have also been generated. To construct a multiresolution surface of an arbitrary topology, however, biorthogonal wavelets are needed. In 1 we introduced local least squares models for reversing subdivision rules to construct multiresolution curves and tensor product surfaces, noticing that the resulting wavelets were biorthogonal (under an induced inner product). Here, we construct multiresolution surfaces of arbitrary topologies by locally reversing the Doo subdivision scheme. In a Doo subdivision, a coarse surface is converted into a fine one by the contraction of coarse faces and the addition of new adjoining faces. We propose a novel reversing process to convert a fine surface into a coarse one plus an error. The conversion has the property that the subdivision of the resulting coarse surface is locally closest to the original fine surface, in the least squares sense, for two important face geometries. In this process, we first find those faces of the fine surface which might have been produced by the contraction of a coarse face in a Doo subdivision scheme. Then, we expand these faces. Since the expanded faces are not necessarily joined properly, several candidates are usually at hand for a single vertex of the coarse surface. To identify the set of candidates corresponding to a vertex, we construct a graph in such a way that any set of candidates corresponds to a connected component. The connected components can easily be identified by a depth first search traversal of the graph. Finally, vertices of the coarse surface are set to be the average of their corresponding candidates, and this is shown to be equivalent to local least squares approximation for regular arrangements of triangular and quadrilateral faces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

REVERSE LOOP SUBDIVISION FOR GEOMETRY AND TEXTURES

Reverse subdivision aims at constructing a coarser representation of an object given by a fine polygon mesh. In this paper, we first derive a mask for reverse Loop subdivision that can be applied to both regular and extraordinary vertices. The mask is parameterized, and thus can also be used in reversing variants of Loop subdivision, such as those proposed by Warren and Litke. We apply this mas...

متن کامل

Reverse Engineering Using a Subdivision Surface Scheme

Subdivision surfaces are finding their way into many Computer Aided Design and Animation packages. Popular choices include Loop, Catmull-Clark, Doo-Sabin etc. Subdivision surfaces have many design advantages over traditional use of NURBs. NURB surfaces always are problematic when multiple patches meet. Reverse engineering (RE) is associated with the idea of scanning physical objects and represe...

متن کامل

Smooth reverse subdivision

In this paper we present a new multiresolution framework that takes into consideration reducing the coarse points’ energy during decomposition. We start from initial biorthogonal filters to include energy minimization in multiresolution. Decomposition and reconstruction are main operations for any multiresolution representation. We formulate decomposition as smooth reverse subdivision, based on...

متن کامل

Capturing and Re-Using Artistic Styles with Reverse Subdivision-Based Multiresolution Methods

We describe a multiresolution method for rendering curves that is based on exact reproduction of artistic silhouettes and line hand-gesture styles. Using analysis based on reverse subdivision, we extract examples from both scanned images of line-drawn artwork and interactively-sketched input and apply these styles to the arbitrary strokes of new illustrations. Our algorithms work directly with ...

متن کامل

n-Dimensional multiresolution representation of subdivision meshes with arbitrary topology

We present a new model for the representation of n-dimensional multiresolution meshes. It provides a robust topological representation of arbitrary meshes that are combined in closely interlinked levels of resolution. The proposed combinatorial model is formalized through the mathematical model of combinatorial maps allowing us to give a general formulation, in any dimensions, of the topologica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comput. Graph. Forum

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2002